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Abstract

Transient dynamic responses of an elastic cracked solid subjected to in-plane surface loadings are investigated in this

study. Two vertical cracks, a surface-breaking crack and a sub-surface crack, are considered. The frequency responses

of the plane strain problem are calculated by the computational mechanics combining the finite element method with

the boundary integral equation. The finite element method is used for the near-field enclosing the crack, while the

boundary integral equation is applied for the far-field to satisfy the Sommerfeld radiation condition. The transient

responses are then obtained using fast Fourier transform. Surface displacements, crack opening displacements, and

dynamic stress intensity factors are presented to show the significant effects of the cracks. The interaction between the

elastic waves and the cracks as well as the mode conversion phenomena can be observed and understood through the

numerical simulations.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Cracks can cause significant changes in the mechanical behavior of materials and the integrity of struc-

tures, the most dramatic change being the possibility of fracture. The ultrasonic techniques in which elastic

waves propagate through the material and are scattered by the crack are often utilized for the nondestructive

detection of cracks. From the features of the scattering, the detection and characterization of the crack can

be attempted. Recently, a review of ultrasonic quantitative nondestructive evaluation (NDE) focused on the

detection of cracks can be found in Achenbach (2000). On the other hand, in the context of elastodynamic

fracture mechanics, the main emphasis is placed on determining the stress intensity factor as a function of
time and of geometrical and material parameters. An important class of problems concerns the diffraction of
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the elastic waves by a pre-existing crack in the material. For a crack existing in the particular load-carrying

member, it is necessary to evaluate the stress intensity factor for a critical size of the crack in order to check

whether the fracture toughness of the material is exceeded or not. In particular for stress wave loading,

dynamic overshoots of stress intensity factors are possible. Therefore, it is of importance to understand the
physical phenomenon of the elastic wave scattering by cracks beforehand.

In two-dimensional elastodynamics, two mutually uncoupled kinds of wave motion exist, viz., hori-

zontally polarized shear wave motion (SH waves or anti-plane motion) and vertically polarized wave

motion (P and SV waves or in-plane motion). The case of anti-plane motion is particularly attractive be-

cause of the simple nature of the interaction of SH waves with cracks and other boundaries. Therefore, the

problems of anti-plane motion have been studied extensively by a number of authors. The diffraction of SH

waves by an edge crack was investigated by Datta (1979) using a matched asymptotic expansion as well as a

combined finite element and analytical expansion technique. Ma and Chen (1994) solved analytically the
transient response of a half-space containing an inclined sub-surface semi-infinite crack by using the su-

perposition of the fundamental solutions in the Laplace transform domain. The scattering of time harmonic

waves by a rough crack were studied by Bostr€oom et al. (1994) using an extension of the null field approach.

The responses of a cracked half-space subjected to an incident SH plane wave and an anti-plane impact

loading have been investigated in detail by Liu et al. (1997) and Liu et al. (1998), respectively. The depth of

the crack-tip can be estimated from the diffracted waves received at the free surface. The resonance fre-

quencies are closely related to the crack length. Zhang (2000) presented the dynamic stress intensity factors

of an anti-plane crack in anisotropic solids using a boundary integral equation method.
For the case of in-plane motion, the scattering of elastic waves is more complicated due to the phe-

nomena of mode conversion. Few analytical solutions are available. More general and realistic problems

must be treated by numerical method, for instance, finite difference methods, finite element methods,

boundary element methods, T-matrix methods, etc. The excitation of Rayleigh waves at surface disconti-

nuities (steps and slots) due to body waves incidence were investigated by Saffari and Bond (1987) using

explicit finite difference method. The numerical modelling work showed that mode-converted Rayleigh

waves are a strong feature of the scattering at surface-breaking slots. These results were also backed up by

experimental observations. Scandrett and Achenbach (1987) calculated the interaction of an ultrasonic
wave with a surface-breaking crack by the use of the finite difference method. A modified finite-difference

grid was derived by Saenger et al. (2000) to solve the problems of high contrasts of the medium parameters,

which could cause instability problems for a standard staggered grid. Although the finite difference method

is a powerful tool for the problem of wave propagation, it has difficulty to treat the problem of very narrow

cracks. The finite element method is superior to the other methods because of its versatility to model flaws

of arbitrary shape and size, and its ability to incorporate anisotropic and inhomogeneous material nature

with ease. The finite element method combined with particle models were used by Harumi and Uchida

(1990) for the computer simulation of ultrasound and its applications. A plane strain finite element model
with absorbing boundary condition was used by Datta and Kishore (1996) and Kishore et al. (2000) to

simulate the scattering of ultrasonic waves in isotropic and orthotropic solids with or without the presence

of flaws. A hybrid method combining T-matrix and boundary element was used by Wang and Shen (1997)

to study the scattering of elastic waves by a crack in a plate.

Dynamic stress intensity factors for buried planar and nonplanar cracks in a half-space were studied by

Shah et al. (1986) using a hybrid numerical technique combining a multipolar representation of the scat-

tered field with the finite element method. The closed form solutions of the stress intensity factor of a

subsurface inclined semi-infinite crack in a half-space were given by Tsai and Ma (1993) using linear su-
perposition of the fundamental solution in the Lapalace transform domain. Based on integral transforms

and an asymptotic usage of the Wiener–Hopf technique, exact expressions for the elastodynamic stress

intensity factor at the tip of a long external crack in a strip-like body were analyzed by Georgiadis and

Brock (1994).
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Because each method has its own advantages and disadvantages, a hybrid method combining the finite

element method with the boundary integral equation is adopted in this study. The finite element method is

applied to the near-field enclosing completely the scatterers, while the boundary integral equation is used

for the far-field to satisfy the Sommerfeld radiation condition. By using this hybrid method, the full field
solutions can be obtained without the problem of spurious reflections from the artificial boundaries of the

computation domain.

This paper is concerned with the scattering that results from the interaction of cracks with elastic waves

generated by a short pulse at the free surface of a semi-infinite solid. The results of our research may be of

considerable interest to both quantitative NDE of structures and fracture mechanics. A problem of special

interest to NDE and fracture mechanics is the diffraction by a near-surface crack. Therefore, two types of

cracks, a surface-breaking crack and a sub-surface crack, are considered in this study. Numerical results are

presented for surface displacements, crack opening displacements, and dynamic stress intensity factors to
show the significant effects of the cracks. The numerical study revealed some interesting features of the

problem. Strong Rayleigh waves are always produced at the free surface of the half-space. The interaction

between impact stress waves and cracks may cause overshoots for dynamic stress intensity factors. Both

reflected and diffracted waves are not only clearly observed at the free surface but also strongly related to

the characteristics of the crack.
2. Statement of the problem

A two-dimensional cracked solid subjected to an in-plane time-dependent loading as shown in Fig. 1 is

considered in the present analysis. The material response is assumed to be linear elastodynamic. The crack

is considered to be a surface of displacement discontinuity, which cannot transmit surface tractions. The

faces of a crack are infinitesimally close prior to ultrasonic excitation, and they do not interact when the

solid has been excited. This is an acceptable approximation for real cracks if the faces do not touch when

the solid is disturbed. This problem is first solved in frequency domain, then the transient responses is

obtained by the fast Fourier transform. Let the displacement uðx; z; tÞ has time harmonic behavior of the
form uðx; zÞe�ixt, where x is the circular frequency and t is the time. The wave equation for homogeneous

isotropic elasticity theory in frequency domain, in terms of the displacement uðx; zÞ, is given by
ðk þ 2lÞrr � u� lr�r� uþ f ¼ �qx2u; ð1Þ
Fig. 1. Configuration of a cracked solid subjected to an in-plane loading at the free surface.
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where, k and l are the Lam�ee elastic constants, q is the material density, f is the body force, and the factor

e�ixt has been dropped. Boundary conditions include traction-free conditions for crack faces and the

surface of the half-space and the Sommerfeld radiation conditions.

In order to solve the problem by the hybrid method considered here, an artificial boundary B and a
contour C are introduced as shown in Fig. 1. The crack is completely enclosed by the contour C. The

interior region RI is the near-field bounded by the boundary B, while the exterior region RE is the far-field

bounded inside by contour C. The region between boundary B and contour C belongs to the interior as well

as exterior and the overlap is for sidestepping singularities in calculations of Green�s functions. It has been
possible to move the observation points (on C) away from the source points (on B). Thus the singularities of

the Green�s functions are avoided and the desired numerical accuracy can be assured. The finite element

technique is used for the interior region and the boundary integral representation along contour C for the

displacements on boundary B is used to solve the scattered field in the exterior region.
3. Boundary integral equation

The boundary integral equation is derived by means of the Betti�s reciprocal theorem and used in the

exterior region to obtain the scattered field solutions. Here the total field displacement u can be specified by
u ¼ uðiÞ þ uðsÞ; ð2Þ
where uðiÞ is the incident field displacement and uðsÞ the scattered field. For the problem considered in this
study, the incident field can be obtained by solving the Green�s problem that is a flawless solid subjected to a

concentrated unit load. The equation of Green�s problem with source located at the point ðn; fÞ is given by
Rijk;k þ qx2Gij ¼ �dijdðx� nÞdðz� fÞ; ð3Þ
where i denotes the force direction, j stands for the displacement direction, Gij and Rijk are the Green�s
displacements and the corresponding stresses. By applying the traction-free boundary condition and the

radiation condition to the homogeneous half-space, the Green�s functions in Eq. (3) can be obtained. The

explicit solutions are expressed in Liu et al. (1996). The numerical results were achieved through an effective

quadrature scheme given by Xu and Mal (1987). The scattered field is represented by a line integral based
on the Betti�s reciprocal theorem. In this reciprocity theorem, two different elastodynamic states are em-

ployed. The two-dimensional reciprocity theorem over contour C can be expressed in the following form,
ZZ
A

ðfðIÞ � uðIIÞ � fðIIÞ � uðIÞÞdA ¼
I
C
ðuðIÞ � sðIIÞ � uðIÞ � sðIIÞÞdC; ð4Þ
where uðIÞ and sðIÞ are the displacement and surface traction caused by the body force fðIÞ, and uðIIÞ and sðIIÞ

denote the displacement and surface traction due to the body force fðIIÞ, respectively.

The Betti�s reciprocal theorem is first applied to the exterior region. Two states considered here are

scattered field and Green�s field with source ðn; fÞ located at boundary B. There are no defects in the exterior

region so that the body force of scattered field is zero. Using the reciprocal theorem these two states can be

related in the following manner,
uðsÞi ðn; fÞ ¼
I
C

uðsÞj Rijk

�
� Gijr

ðsÞ
jk

�
nk dC; ð5Þ
where uðsÞi and rðsÞ
jk denotes the displacement and stress tensor of scattered field, and nk is the component of

outward unit normal to contour C. Next, the reciprocal theorem is applied to the region bounded by

contour C. The incident field and the Green�s field are the two states considered here. There are no body
forces for both fields in this region, thus Eq. (4) becomes
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0 ¼
I
C

uðiÞj Rijk

�
� Gijr

ðiÞ
jk

�
nk dC; ð6Þ
where uðiÞj and rðiÞ
jk denotes the displacement and stress of the incident field.

Combining Eqs. (5) and (6), the displacement for scattered field at point ðn; fÞ can be represented by the

following integral form,
uðsÞi ðn; fÞ ¼
I
C

ujRijk

�
� Gijrjk

�
nk dC: ð7Þ
Then the displacement for total field is given by
uiðn; fÞ ¼
I
C

ujRijk

�
� Gijrjk

�
nk dC þ uðiÞi ðn; fÞ: ð8Þ
This integral representation can be used to calculate the total field at any point in the exterior region.

However, the evaluation of the integration is impossible without the scattered field solution at contour C.

This can be achieved with the aid of finite element method.
4. Finite element method

The finite element method deals with the solution in the interior region, which encloses all the flaws in the

material. The interior region is discretized into a number of finite elements. The mesh size is chosen such

that approximately ten nodes exist in a distance of one smallest wavelength for a reasonable numerical

accuracy. The area between boundary B and contour C is discretized by one layer of seven-node elements

with two nodes on boundary B. In order to simulate the stress concentration near the crack-tips, six-node

triangular quarter-point singular elements has been used around the crack-tips. The rest are eight-node

quadrilateral elements. The displacement interior to the elements can be expressed in terms of the shape
functions (U) and nodal displacements ðdeÞ in the matrix form as follows:
ue ¼
ux
uz

� �
e

¼ /1 0 � � � /n 0

0 /1 � � � 0 /n

	 

ux1
uz1
..
.

uxn
uzn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

e

¼ Ude; ð9Þ
where subscript e is the element identifier and n is the number of nodes per element. The strain within an

element can be written in terms of nodal displacements as the following:
e ¼ Due ¼ Bde; ð10Þ

where B ¼ DU and D is an operator matrix defined as
D ¼

o

ox
0

0
o

oz
o

oz
o

ox

2
666664

3
777775
: ð11Þ
The relationship between the stress and the strain is given by
r ¼ Ce; ð12Þ

where C is a 3 · 3 symmetric matrix of the material elastic constants in the element.
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In order to determine the elemental impedance matrix, let us consider the energy function of the element,
Ee ¼
1

2

ZZ
Ae

ðr	e � qx2u	uÞdxdz� 1

2

Z
l
ðu	sþ s	uÞdl; ð13Þ
where 	 denotes the conjugate transpose. The first term in Eq. (13) includes the strain and kinetic energies,

while the second term is the surface traction work potential. Substituting Eqs. (9), (10), and (12) into

Eq. (13) and taking the variation with respect to u	, the equation of motion for each element can be written

in the following form,
ðKe � x2MeÞde ¼ pe; ð14Þ

where Ke is the stiffness matrix determined by the elastic properties of the element, Me is the mass matrix

determined by the density distribution of the element, and pe is the nodal force vector. Then the global

equation of motion can be obtained by assembling the elemental equations of motion,
ðK� x2MÞd ¼ p: ð15Þ

Both the stiffness and mass matrices are large, sparse, symmetric and positive definite that can be stored

effectively by adequate techniques. Eq. (15) can be written in terms of impedance matrix S as follows:
Sd ¼ p: ð16Þ

The nodal displacement dB at boundary B can be separated from the interior nodal displacement dI. Thus

Eq. (16) is partitioned into the following form,
SBB SBI

SIB SII

	 

dB
dI

� �
¼ pB

pI

� �
; ð17Þ
where pB denotes the nodal force at the boundary B and pI the interior nodal force. This completes the

analysis of the finite element formulation for the near field.
5. Solutions

The solution of the problem can be obtained by coupling the finite element equations with the boundary

integral equations. Making use of finite element formulations from Eqs. (9), (10), and (12), the evaluation

of Eq. (8) for all nodes on the boundary B becomes
dB ¼ d
ðiÞ
B þ ABIdI þ ABBdB; ð18Þ
where d
ðiÞ
B is the incident field displacement at the boundary B, ABI and ABB are complex matrices. Com-

bining Eq. (18) with the second equation of Eq. (17), one gets
I� ABB �ABI

SIB SII

	 

dB
dI

� �
¼ d

ðiÞ
B

pI

� �
: ð19Þ
The total nodal displacements (dB and dI) at a certain frequency can be obtained by solving Eq. (19). The

complex matrix in Eq. (19) is usually large, sparse, and unsymmetrical. In order to reduce the required

memory of computation, a compacted data structure is used to store the nonzero terms of the sparse matrix

in a column list scheme. Then an iterative method, the biconjugate gradient method, is adopted instead of

usual direct methods to solve Eq. (19). These techniques not only are very efficient but also provide a

satisfaction solution. Once the nodal displacements in the near filed are obtained, the full field solutions any
where in the domain can be easily calculated either by the finite element formulation of Eq. (9) or by the

boundary integral representation of Eq. (8).
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For vertical cracks considered in this study, the horizontal and vertical crack opening displacements (Cx

and Cz) are given by
Cx ¼ uxð0þ; zÞ � uxð0�; zÞ; ð20Þ

Cz ¼ uzð0þ; zÞ � uzð0�; zÞ: ð21Þ
The stress intensity factors KI and KII can be computed from the crack opening displacements near a crack-

tip by the following relations (Shah et al., 1986)
KI

KII

� �
¼ l

4ð1� mÞ
1

L

� �1=2
D1

D2

� �
; ð22Þ
where
D1 ¼ 4ðux6 � ux4Þ � ðux3 � ux2Þ; ð23Þ

D2 ¼ 4ðuz6 � uz4Þ � ðuz3 � uz2Þ; ð24Þ
and m is the Poisson�s ratio of the material. In the above equations uxi and uzi represent the displacement

components at the ith node. The nodes 2, 3, 4, and 6 along with L were defined in Liu et al. (1996).
With the solutions in frequency domain at hand, the time domain responses of the medium can be easily

recovered by inverse Fourier transform.
6. Results and discussions

Two vertical cracks with length d are considered in this study. One is a surface-breaking crack and the

other is a sub-surface crack which is d=4 deeper than the surface-breaking crack. All computations have

been carried out for a value of Poisson�s ratio m ¼ 1=3. The variables used in this study are presented in

nondimensional form. The spatial coordinates are normalized with respect to the crack length d. The wave
velocities are normalized with respect to the shear wave velocity b. Thus the normalized shear wave velocity

is equal to 1.0. Based on the value of Poisson�s ratio, the corresponding normalized longitudinal and
Rayleigh wave velocities can be estimated (Achenbach, 1973) to be 2.0 and 0.933, respectively. The nor-

malized time ð�ttÞ and frequency ð�ff Þ are defined as
�tt ¼ tb
d

ð25Þ
and
�ff ¼ fd
b
; ð26Þ
where f ¼ x=2p is the frequency. The loading function is a Ricker pulse given by
pðtÞ ¼ ð2p2f 2
c t

2 � 1Þ expð�p2f 2
c t

2Þ; ð27Þ
where fc is the characteristic frequency of the pulse. Note that the load has its maximum value at t ¼ 0. For

all the numerical results presented in this paper, the loading function with normalized characteristic fre-

quency equal to 1.0 is applied on the free surface at the point x ¼ �0:95d, in which the wavelength of the

shear wave is equal to the crack length d. To obtain the transient responses, the normalized frequency range
of 0.0–4.0 was equally subdivided into 65 discrete frequencies and the response was then computed at each

of these frequencies. The responses in frequency domain are given by multiplying these spectra by the
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spectrum of the loading function. The corresponding responses in time domain is then obtained by using

the fast Fourier transform. First, the numerical accuracy was checked by means of performing the zero-

scattering test. Very good agreement has been obtained. Besides, for the anti-plane problem with a surface-

breaking crack, very consistent results were shown in Liu et al. (1997) for the crack opening displacements
and the stress intensity factors at different frequencies in comparison with those presented by Stone et al.

(1980). The numerical results for the loading function applied in x- and z-directions are discussed separately

in the next two sub-sections.
6.1. Force in the x-direction

The horizontal and vertical displacements from x=d ¼ �2:0 to 2.0 on the surface of a medium without

the crack are shown in Figs. 2 and 3, respectively. Note that the results shown in Figs. 2 and 3 are computed

from analytical solutions. Those computed from the hybrid numerical method (not shown here) also have

very good agreement with Figs. 2 and 3. This is so called zero-scattering test. In view of these figures, it is

clear that the longitudinal (P), shear (SV), and Rayleigh (R) waves are generated from the impact source.
According to the problem considered in this study, these initial waves will arrive at x=d ¼ �2:0 and 2.0 at
Fig. 2. Horizontal displacements at the free surface of a homogeneous medium subjected to a force in the x-direction.

Fig. 3. Vertical displacements at the free surface of a homogeneous medium subjected to a force in the x-direction.
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about�tt ¼ 0:525, 1.05, 1.125 and�tt ¼ 1:475, 2.95, 3.162, respectively. These results can be confirmed from the

figures. The longitudinal and Rayleigh waves can be easily distinguished in Fig. 2 from their quite different

wave velocities. However, the vertical surface displacements shown in Fig. 3 are mainly the coupling of

Rayleigh waves and shear waves due to their similar wave velocities. It is observed that Rayleigh surface
waves dominate the elastodynamic field near the free surface because most of the energy of the Rayleigh

waves is confined to the free surface while the energy of body waves (longitudinal and shear waves) are

spread over the entire domain. Therefore the Rayleigh waves are useful information for the detection of the

near surface flaws because they can be easily accessible to measurement with a transducer on the surface.

The horizontal surface displacements of a medium containing a surface-breaking crack and a sub-surface

crack are shown in Figs. 4 and 5, respectively. It is observed that the responses before the initial waves

interact with the cracks are consistent with those of homogeneous medium as shown in Fig. 2. This can be

considered as another way to verify the reliability of the hybrid numerical method. After the initial waves
interact with the cracks, they are reflected and diffracted by the cracks. For the problem considered here,

the blocking effect of the surface-breaking crack to the initial waves is much stronger than that of the sub-

surface crack. Thus the patterns of the surface responses caused by a surface-breaking crack are quite
Fig. 4. Horizontal displacements at the free surface of a medium containing a vertical surface-breaking crack with force in the x-
direction.

Fig. 5. Horizontal displacements at the free surface of a medium containing a vertical sub-surface crack with force in the x-direction.
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distinct from those caused by a sub-surface crack. These differences are useful for the classification of the

crack types. Although the diffracted waves from the lower crack-tips are weak compared with other waves,

they can be clearly observed at the free surface. Their amplitudes and arrival times are strongly related to

the locations of the crack-tips.
Figs. 6 and 7 show the horizontal crack opening displacements along the whole crack length of the

surface-breaking and sub-surface cracks, respectively. The amplitudes of crack opening displacements for

the surface-breaking crack are very large at the crack mouth when the initial waves arrive at the crack.

After the initial waves, the effect of scattering waves can be observed from both figures. The crack opening

displacements near the crack-tips, which vary rapidly when the initial waves arrive, are closely related to the

stress intensity factors. The dynamic stress intensity factors ðKI and KIIÞ for the surface-breaking crack are

shown in Fig. 8. It is shown that KI has larger amplitude and oscillates longer than KII. Figs. 9 and 10 show

the dynamic stress intensity factors KI and KII for the sub-surface crack, respectively. The upper tip has
larger values of KI and KII when the initial waves arrive at the crack. However, a very interesting result is

found in Fig. 9. The lower tip could have larger value of KI in the time histories than the upper tip. This

phenomenon was not found in the case of the Rayleigh wave incidence alone as shown in Fig. 10(b) in Liu

et al. (1996).
Fig. 6. Horizontal crack opening displacements for the vertical surface-breaking crack with force in the x-direction.

Fig. 7. Horizontal crack opening displacements for the vertical sub-surface crack with force in the x-direction.



Fig. 8. Dynamic stress intensity factors for the vertical surface-breaking crack with force in the x-direction.

Fig. 9. Dynamic stress intensity factors (KI) for the vertical sub-surface crack with force in the x-direction.

Fig. 10. Dynamic stress intensity factors (KII) for the vertical sub-surface crack with force in the x-direction.
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6.2. Force in the z-direction

Generally speaking, the patterns of the responses for the case of force in the z-direction are similar to

those for the case of force in the x-direction. Figs. 11 and 12 computed from analytical solutions show the
horizontal and vertical surface displacements on a medium without the crack, respectively. It is shown

again that among the initial waves Rayleigh waves have more contribution to the surface responses than

longitudinal and shear waves. Compared with Fig. 2, the longitudinal wave is not obvious in Fig. 11.

The vertical surface displacements of a medium containing a surface-breaking crack are shown in

Fig. 13. The initial Rayleigh waves are reflected as Rayleigh waves. Later, the diffracted waves from the

crack-tip appear at the free surface. Fig. 14 shows the vertical surface displacements for the case with a sub-

surface crack. In this case, reflected waves, transmitted waves, and diffracted waves from both crack-tips are

observed at the free surface. Diffracted waves induced by the upper crack-tip and transmitted waves
are mixed together in the region x > 0. Note that the accuracy of the developed method used in this paper

are ensured again by comparing the analytical results shown in Fig. 12 with the numerical results before the

initial waves arrive at the cracks as shown in Figs. 13 and 14.
Fig. 11. Horizontal displacements at the free surface of a homogeneous medium subjected to a force in the z-direction.

Fig. 12. Vertical displacements at the free surface of a homogeneous medium subjected to a force in the z-direction.



Fig. 13. Vertical displacements at the free surface of a medium containing a vertical surface-breaking crack with force in the z-direction.

Fig. 14. Vertical displacements at the free surface of a medium containing a vertical sub-surface crack with force in the z-direction.

Fig. 15. Vertical crack opening displacements for the vertical surface-breaking crack with force in the z-direction.
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Fig. 16. Vertical crack opening displacements for the vertical sub-surface crack with force in the z-direction.

Fig. 17. Dynamic stress intensity factors for the vertical surface-breaking crack with force in the z-direction.

Fig. 18. Dynamic stress intensity factors (KI) for the vertical sub-surface crack with force in the z-direction.
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Fig. 19. Dynamic stress intensity factors (KII) for the vertical sub-surface crack with force in the z-direction.
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The vertical crack opening displacements for the surface-breaking and sub-surface cracks are shown in

Figs. 15 and 16, respectively. Large crack opening displacements are observed at the crack mouth as shown

in Fig. 15. Dynamic stress intensity factors for the surface-breaking crack are shown in Fig. 17 and those

for the sub-surface crack are shown in Figs. 18 and 19. It is observed again in Fig. 18 that the stress in-

tensity factor (KI) at the lower tip of the sub-surface crack has much larger amplitude than the upper tip.

This could be the contribution from the body waves.
7. Conclusions

A hybrid method combining the finite element method with boundary integral equation is applied to

investigate the dynamic responses of a cracked elastic solid subjected to in-plane surface loadings. The

numerical results for surface displacements, crack opening displacements, and dynamic stress intensity
factors are presented. The initial waves generated by the loading pulse include longitudinal, shear, and

Rayleigh waves. Among the initial waves Rayleigh surface waves dominate the elastodynamic field near

the free surface because most of the energy of Rayleigh waves is restricted to the free surface while the

energy of body waves are spread into the entire domain. The patterns of the surface responses caused by

a surface-breaking crack are quite distinct from those caused by a sub-surface crack. The distinctions

can be used to classify the types of cracks. The amplitudes and arrival times of the diffracted waves from

the crack-tips are strongly related to the location and size of the crack. The lower tip of the sub-surface

crack could have larger value of KI in the time histories than the upper tip. This phenomenon does not
occur in the case of the Rayleigh wave incidence alone. This contribution is mainly from the body

waves.
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