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Abstract

Transient dynamic responses of an elastic cracked solid subjected to in-plane surface loadings are investigated in this
study. Two vertical cracks, a surface-breaking crack and a sub-surface crack, are considered. The frequency responses
of the plane strain problem are calculated by the computational mechanics combining the finite element method with
the boundary integral equation. The finite element method is used for the near-field enclosing the crack, while the
boundary integral equation is applied for the far-field to satisfy the Sommerfeld radiation condition. The transient
responses are then obtained using fast Fourier transform. Surface displacements, crack opening displacements, and
dynamic stress intensity factors are presented to show the significant effects of the cracks. The interaction between the
elastic waves and the cracks as well as the mode conversion phenomena can be observed and understood through the
numerical simulations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Cracks can cause significant changes in the mechanical behavior of materials and the integrity of struc-
tures, the most dramatic change being the possibility of fracture. The ultrasonic techniques in which elastic
waves propagate through the material and are scattered by the crack are often utilized for the nondestructive
detection of cracks. From the features of the scattering, the detection and characterization of the crack can
be attempted. Recently, a review of ultrasonic quantitative nondestructive evaluation (NDE) focused on the
detection of cracks can be found in Achenbach (2000). On the other hand, in the context of elastodynamic
fracture mechanics, the main emphasis is placed on determining the stress intensity factor as a function of
time and of geometrical and material parameters. An important class of problems concerns the diffraction of
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the elastic waves by a pre-existing crack in the material. For a crack existing in the particular load-carrying
member, it is necessary to evaluate the stress intensity factor for a critical size of the crack in order to check
whether the fracture toughness of the material is exceeded or not. In particular for stress wave loading,
dynamic overshoots of stress intensity factors are possible. Therefore, it is of importance to understand the
physical phenomenon of the elastic wave scattering by cracks beforehand.

In two-dimensional elastodynamics, two mutually uncoupled kinds of wave motion exist, viz., hori-
zontally polarized shear wave motion (SH waves or anti-plane motion) and vertically polarized wave
motion (P and SV waves or in-plane motion). The case of anti-plane motion is particularly attractive be-
cause of the simple nature of the interaction of SH waves with cracks and other boundaries. Therefore, the
problems of anti-plane motion have been studied extensively by a number of authors. The diffraction of SH
waves by an edge crack was investigated by Datta (1979) using a matched asymptotic expansion as well as a
combined finite element and analytical expansion technique. Ma and Chen (1994) solved analytically the
transient response of a half-space containing an inclined sub-surface semi-infinite crack by using the su-
perposition of the fundamental solutions in the Laplace transform domain. The scattering of time harmonic
waves by a rough crack were studied by Bostrom et al. (1994) using an extension of the null field approach.
The responses of a cracked half-space subjected to an incident SH plane wave and an anti-plane impact
loading have been investigated in detail by Liu et al. (1997) and Liu et al. (1998), respectively. The depth of
the crack-tip can be estimated from the diffracted waves received at the free surface. The resonance fre-
quencies are closely related to the crack length. Zhang (2000) presented the dynamic stress intensity factors
of an anti-plane crack in anisotropic solids using a boundary integral equation method.

For the case of in-plane motion, the scattering of elastic waves is more complicated due to the phe-
nomena of mode conversion. Few analytical solutions are available. More general and realistic problems
must be treated by numerical method, for instance, finite difference methods, finite element methods,
boundary element methods, T-matrix methods, etc. The excitation of Rayleigh waves at surface disconti-
nuities (steps and slots) due to body waves incidence were investigated by Saffari and Bond (1987) using
explicit finite difference method. The numerical modelling work showed that mode-converted Rayleigh
waves are a strong feature of the scattering at surface-breaking slots. These results were also backed up by
experimental observations. Scandrett and Achenbach (1987) calculated the interaction of an ultrasonic
wave with a surface-breaking crack by the use of the finite difference method. A modified finite-difference
grid was derived by Saenger et al. (2000) to solve the problems of high contrasts of the medium parameters,
which could cause instability problems for a standard staggered grid. Although the finite difference method
is a powerful tool for the problem of wave propagation, it has difficulty to treat the problem of very narrow
cracks. The finite element method is superior to the other methods because of its versatility to model flaws
of arbitrary shape and size, and its ability to incorporate anisotropic and inhomogeneous material nature
with ease. The finite element method combined with particle models were used by Harumi and Uchida
(1990) for the computer simulation of ultrasound and its applications. A plane strain finite element model
with absorbing boundary condition was used by Datta and Kishore (1996) and Kishore et al. (2000) to
simulate the scattering of ultrasonic waves in isotropic and orthotropic solids with or without the presence
of flaws. A hybrid method combining T-matrix and boundary element was used by Wang and Shen (1997)
to study the scattering of elastic waves by a crack in a plate.

Dynamic stress intensity factors for buried planar and nonplanar cracks in a half-space were studied by
Shah et al. (1986) using a hybrid numerical technique combining a multipolar representation of the scat-
tered field with the finite element method. The closed form solutions of the stress intensity factor of a
subsurface inclined semi-infinite crack in a half-space were given by Tsai and Ma (1993) using linear su-
perposition of the fundamental solution in the Lapalace transform domain. Based on integral transforms
and an asymptotic usage of the Wiener—Hopf technique, exact expressions for the elastodynamic stress
intensity factor at the tip of a long external crack in a strip-like body were analyzed by Georgiadis and
Brock (1994).
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Because each method has its own advantages and disadvantages, a hybrid method combining the finite
element method with the boundary integral equation is adopted in this study. The finite element method is
applied to the near-field enclosing completely the scatterers, while the boundary integral equation is used
for the far-field to satisfy the Sommerfeld radiation condition. By using this hybrid method, the full field
solutions can be obtained without the problem of spurious reflections from the artificial boundaries of the
computation domain.

This paper is concerned with the scattering that results from the interaction of cracks with elastic waves
generated by a short pulse at the free surface of a semi-infinite solid. The results of our research may be of
considerable interest to both quantitative NDE of structures and fracture mechanics. A problem of special
interest to NDE and fracture mechanics is the diffraction by a near-surface crack. Therefore, two types of
cracks, a surface-breaking crack and a sub-surface crack, are considered in this study. Numerical results are
presented for surface displacements, crack opening displacements, and dynamic stress intensity factors to
show the significant effects of the cracks. The numerical study revealed some interesting features of the
problem. Strong Rayleigh waves are always produced at the free surface of the half-space. The interaction
between impact stress waves and cracks may cause overshoots for dynamic stress intensity factors. Both
reflected and diffracted waves are not only clearly observed at the free surface but also strongly related to
the characteristics of the crack.

2. Statement of the problem

A two-dimensional cracked solid subjected to an in-plane time-dependent loading as shown in Fig. 1 is
considered in the present analysis. The material response is assumed to be linear elastodynamic. The crack
is considered to be a surface of displacement discontinuity, which cannot transmit surface tractions. The
faces of a crack are infinitesimally close prior to ultrasonic excitation, and they do not interact when the
solid has been excited. This is an acceptable approximation for real cracks if the faces do not touch when
the solid is disturbed. This problem is first solved in frequency domain, then the transient responses is
obtained by the fast Fourier transform. Let the displacement u(x,z, ¢) has time harmonic behavior of the
form u(x,z)e ', where w is the circular frequency and ¢ is the time. The wave equation for homogeneous
isotropic elasticity theory in frequency domain, in terms of the displacement u(x,z), is given by

(A4 20)VV -u—puV x V xu+f=—pou, (1)
impact
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Y

Fig. 1. Configuration of a cracked solid subjected to an in-plane loading at the free surface.
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where, A and u are the Lamé elastic constants, p is the material density, f is the body force, and the factor
e ' has been dropped. Boundary conditions include traction-free conditions for crack faces and the
surface of the half-space and the Sommerfeld radiation conditions.

In order to solve the problem by the hybrid method considered here, an artificial boundary B and a
contour C are introduced as shown in Fig. 1. The crack is completely enclosed by the contour C. The
interior region Ry is the near-field bounded by the boundary B, while the exterior region Ry is the far-field
bounded inside by contour C. The region between boundary B and contour C belongs to the interior as well
as exterior and the overlap is for sidestepping singularities in calculations of Green’s functions. It has been
possible to move the observation points (on C) away from the source points (on B). Thus the singularities of
the Green’s functions are avoided and the desired numerical accuracy can be assured. The finite element
technique is used for the interior region and the boundary integral representation along contour C for the
displacements on boundary B is used to solve the scattered field in the exterior region.

3. Boundary integral equation

The boundary integral equation is derived by means of the Betti’s reciprocal theorem and used in the
exterior region to obtain the scattered field solutions. Here the total field displacement u can be specified by

u=u® 4 u®, (2)

where u) is the incident field displacement and u® the scattered field. For the problem considered in this
study, the incident field can be obtained by solving the Green’s problem that is a flawless solid subjected to a
concentrated unit load. The equation of Green’s problem with source located at the point (&, () is given by

ik + pw’ Gy = —8;0(x — E)d(z — L), (3)

where i denotes the force direction, j stands for the displacement direction, G;; and X, are the Green’s
displacements and the corresponding stresses. By applying the traction-free boundary condition and the
radiation condition to the homogeneous half-space, the Green’s functions in Eq. (3) can be obtained. The
explicit solutions are expressed in Liu et al. (1996). The numerical results were achieved through an effective
quadrature scheme given by Xu and Mal (1987). The scattered field is represented by a line integral based
on the Betti’s reciprocal theorem. In this reciprocity theorem, two different elastodynamic states are em-
ployed. The two-dimensional reciprocity theorem over contour C can be expressed in the following form,

/ /A (F0 - u — g g0y gy — 7{ @ s —u® . sMydc, (4)

where u® and s® are the displacement and surface traction caused by the body force fV', and u™ and s™
denote the displacement and surface traction due to the body force f'V, respectively.

The Betti’s reciprocal theorem is first applied to the exterior region. Two states considered here are
scattered field and Green’s field with source (&, {) located at boundary B. There are no defects in the exterior
region so that the body force of scattered field is zero. Using the reciprocal theorem these two states can be
related in the following manner,

(&0 = § (2= Gyl Jmac, (5

where u@ and aj(.,i) denotes the displacement and stress tensor of scattered field, and n, is the component of
outward unit normal to contour C. Next, the reciprocal theorem is applied to the region bounded by
contour C. The incident field and the Green’s field are the two states considered here. There are no body
forces for both fields in this region, thus Eq. (4) becomes
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0= f{ (uj,i>zi,k - Gl-,qﬁjj)nkdc, (6)
C

where uj@ and aj.ik) denotes the displacement and stress of the incident field.
Combining Eqgs. (5) and (6), the displacement for scattered field at point (£, {) can be represented by the
following integral form,

”l@(fa C) = f (ujzijk - Gijffjk)nk dc. (7)
C
Then the displacement for total field is given by
”i(é» C) = j{ (ujzz;/k - Gijajk)nkdc + ”Ei)(fa () (8)
C

This integral representation can be used to calculate the total field at any point in the exterior region.
However, the evaluation of the integration is impossible without the scattered field solution at contour C.
This can be achieved with the aid of finite element method.

4. Finite element method

The finite element method deals with the solution in the interior region, which encloses all the flaws in the
material. The interior region is discretized into a number of finite elements. The mesh size is chosen such
that approximately ten nodes exist in a distance of one smallest wavelength for a reasonable numerical
accuracy. The area between boundary B and contour C is discretized by one layer of seven-node elements
with two nodes on boundary B. In order to simulate the stress concentration near the crack-tips, six-node
triangular quarter-point singular elements has been used around the crack-tips. The rest are eight-node
quadrilateral elements. The displacement interior to the elements can be expressed in terms of the shape
functions (®) and nodal displacements (d,) in the matrix form as follows:

Uy
¢ 0 d) 0 Uz
_ Uy _ 1 U n . _
ue{uz} B |:0 d)] 0 (rbn : *¢d€7 (9)
‘ Uy
Uzp

e

where subscript e is the element identifier and # is the number of nodes per element. The strain within an
element can be written in terms of nodal displacements as the following:

¢ = Du, = Bd,, (10)
where B = D® and D is an operator matrix defined as
0
— 0
Ox
)
D=|0 — 11
0z (11)
o 0
0z Ox
The relationship between the stress and the strain is given by
6 = Ce, (12)

where C is a 3x 3 symmetric matrix of the material elastic constants in the element.



4930 S.W. Liu, J.H. Huang | International Journal of Solids and Structures 40 (2003) 4925-4940

In order to determine the elemental impedance matrix, let us consider the energy function of the element,
1 1
Ee=3 // (6"e — pw’uu)dxdz — 3 /(u*s +s'u)dl, (13)
Ae !

where * denotes the conjugate transpose. The first term in Eq. (13) includes the strain and kinetic energies,
while the second term is the surface traction work potential. Substituting Eqgs. (9), (10), and (12) into
Eq. (13) and taking the variation with respect to u*, the equation of motion for each element can be written
in the following form,

(Ke - sze)de = P> (14)

where K, is the stiffness matrix determined by the elastic properties of the element, M, is the mass matrix
determined by the density distribution of the element, and p, is the nodal force vector. Then the global
equation of motion can be obtained by assembling the elemental equations of motion,

(K — w’M)d = p. (15)

Both the stiffness and mass matrices are large, sparse, symmetric and positive definite that can be stored
effectively by adequate techniques. Eq. (15) can be written in terms of impedance matrix S as follows:

Sd = p. (16)

The nodal displacement dg at boundary B can be separated from the interior nodal displacement d;. Thus
Eq. (16) is partitioned into the following form,

ESAiR "

where pg denotes the nodal force at the boundary B and p, the interior nodal force. This completes the
analysis of the finite element formulation for the near field.

5. Solutions

The solution of the problem can be obtained by coupling the finite element equations with the boundary
integral equations. Making use of finite element formulations from Egs. (9), (10), and (12), the evaluation
of Eq. (8) for all nodes on the boundary B becomes

dp = dg) + Apid; + Appds, (18)

where dg) is the incident field displacement at the boundary B, Ag; and Agp are complex matrices. Com-
bining Eq. (18) with the second equation of Eq. (17), one gets

I—Agg —Ap | [ dp dg)}
= ) 19
e s 9

The total nodal displacements (dg and d;) at a certain frequency can be obtained by solving Eq. (19). The
complex matrix in Eq. (19) is usually large, sparse, and unsymmetrical. In order to reduce the required
memory of computation, a compacted data structure is used to store the nonzero terms of the sparse matrix
in a column list scheme. Then an iterative method, the biconjugate gradient method, is adopted instead of
usual direct methods to solve Eq. (19). These techniques not only are very efficient but also provide a
satisfaction solution. Once the nodal displacements in the near filed are obtained, the full field solutions any
where in the domain can be easily calculated either by the finite element formulation of Eq. (9) or by the
boundary integral representation of Eq. (8).
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For vertical cracks considered in this study, the horizontal and vertical crack opening displacements (C,
and C;) are given by

C. = u.¥(0+7z) - ux(()i,z), (20)
C. = w(0°,2) — (07, 2), (21)

The stress intensity factors K; and Kj; can be computed from the crack opening displacements near a crack-
tip by the following relations (Shah et al., 1986)

() () {2} @

where
A1 - 4(”)(6 - ux4) - (ux3 - ux2)a (23)
AZ - 4(”26 - uz4) - (uz3 - uzz)a (24)

and v is the Poisson’s ratio of the material. In the above equations u,; and u.; represent the displacement
components at the ith node. The nodes 2, 3, 4, and 6 along with L were defined in Liu et al. (1996).

With the solutions in frequency domain at hand, the time domain responses of the medium can be easily
recovered by inverse Fourier transform.

6. Results and discussions

Two vertical cracks with length d are considered in this study. One is a surface-breaking crack and the
other is a sub-surface crack which is d/4 deeper than the surface-breaking crack. All computations have
been carried out for a value of Poisson’s ratio v = 1/3. The variables used in this study are presented in
nondimensional form. The spatial coordinates are normalized with respect to the crack length d. The wave
velocities are normalized with respect to the shear wave velocity . Thus the normalized shear wave velocity
is equal to 1.0. Based on the value of Poisson’s ratio, the corresponding normalized longitudinal and
Rayleigh wave velocities can be estimated (Achenbach, 1973) to be 2.0 and 0.933, respectively. The nor-
malized time (¢) and frequency (f) are defined as

_tp
=L 25
- 25)
and
+_Jd
=<, 26
f 5 (26)
where f = w/2mn is the frequency. The loading function is a Ricker pulse given by
p(t) = 2r*f26 — 1) exp(—n*f27), (27)

where f; is the characteristic frequency of the pulse. Note that the load has its maximum value at r = 0. For
all the numerical results presented in this paper, the loading function with normalized characteristic fre-
quency equal to 1.0 is applied on the free surface at the point x = —0.95d, in which the wavelength of the
shear wave is equal to the crack length d. To obtain the transient responses, the normalized frequency range
of 0.0-4.0 was equally subdivided into 65 discrete frequencies and the response was then computed at each
of these frequencies. The responses in frequency domain are given by multiplying these spectra by the
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spectrum of the loading function. The corresponding responses in time domain is then obtained by using
the fast Fourier transform. First, the numerical accuracy was checked by means of performing the zero-
scattering test. Very good agreement has been obtained. Besides, for the anti-plane problem with a surface-
breaking crack, very consistent results were shown in Liu et al. (1997) for the crack opening displacements
and the stress intensity factors at different frequencies in comparison with those presented by Stone et al.
(1980). The numerical results for the loading function applied in x- and z-directions are discussed separately
in the next two sub-sections.

6.1. Force in the x-direction

The horizontal and vertical displacements from x/d = —2.0 to 2.0 on the surface of a medium without
the crack are shown in Figs. 2 and 3, respectively. Note that the results shown in Figs. 2 and 3 are computed
from analytical solutions. Those computed from the hybrid numerical method (not shown here) also have
very good agreement with Figs. 2 and 3. This is so called zero-scattering test. In view of these figures, it is
clear that the longitudinal (P), shear (SV), and Rayleigh (R) waves are generated from the impact source.
According to the problem considered in this study, these initial waves will arrive at x/d = —2.0 and 2.0 at

tB/d

Fig. 2. Horizontal displacements at the free surface of a homogeneous medium subjected to a force in the x-direction.
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Uz
o x/d
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-3 -1 1 3 5
tB/d

Fig. 3. Vertical displacements at the free surface of a homogeneous medium subjected to a force in the x-direction.
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about 7 = 0.525, 1.05, 1.125 and # = 1.475, 2.95, 3.162, respectively. These results can be confirmed from the
figures. The longitudinal and Rayleigh waves can be easily distinguished in Fig. 2 from their quite different
wave velocities. However, the vertical surface displacements shown in Fig. 3 are mainly the coupling of
Rayleigh waves and shear waves due to their similar wave velocities. It is observed that Rayleigh surface
waves dominate the elastodynamic field near the free surface because most of the energy of the Rayleigh
waves is confined to the free surface while the energy of body waves (longitudinal and shear waves) are
spread over the entire domain. Therefore the Rayleigh waves are useful information for the detection of the
near surface flaws because they can be easily accessible to measurement with a transducer on the surface.

The horizontal surface displacements of a medium containing a surface-breaking crack and a sub-surface
crack are shown in Figs. 4 and 5, respectively. It is observed that the responses before the initial waves
interact with the cracks are consistent with those of homogeneous medium as shown in Fig. 2. This can be
considered as another way to verify the reliability of the hybrid numerical method. After the initial waves
interact with the cracks, they are reflected and diffracted by the cracks. For the problem considered here,
the blocking effect of the surface-breaking crack to the initial waves is much stronger than that of the sub-
surface crack. Thus the patterns of the surface responses caused by a surface-breaking crack are quite

w
N
-
w
(&)

tB/d

Fig. 4. Horizontal displacements at the free surface of a medium containing a vertical surface-breaking crack with force in the x-
direction.

Bld

Fig. 5. Horizontal displacements at the free surface of a medium containing a vertical sub-surface crack with force in the x-direction.
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distinct from those caused by a sub-surface crack. These differences are useful for the classification of the
crack types. Although the diffracted waves from the lower crack-tips are weak compared with other waves,
they can be clearly observed at the free surface. Their amplitudes and arrival times are strongly related to
the locations of the crack-tips.

Figs. 6 and 7 show the horizontal crack opening displacements along the whole crack length of the
surface-breaking and sub-surface cracks, respectively. The amplitudes of crack opening displacements for
the surface-breaking crack are very large at the crack mouth when the initial waves arrive at the crack.
After the initial waves, the effect of scattering waves can be observed from both figures. The crack opening
displacements near the crack-tips, which vary rapidly when the initial waves arrive, are closely related to the
stress intensity factors. The dynamic stress intensity factors (K; and Kj) for the surface-breaking crack are
shown in Fig. 8. It is shown that Kj has larger amplitude and oscillates longer than Kj;. Figs. 9 and 10 show
the dynamic stress intensity factors K; and Kj; for the sub-surface crack, respectively. The upper tip has
larger values of K7 and Kj; when the initial waves arrive at the crack. However, a very interesting result is
found in Fig. 9. The lower tip could have larger value of Ky in the time histories than the upper tip. This
phenomenon was not found in the case of the Rayleigh wave incidence alone as shown in Fig. 10(b) in Liu
et al. (1996).

Fig. 6. Horizontal crack opening displacements for the vertical surface-breaking crack with force in the x-direction.

z/d
L 0.25

0.75

—_—————— e ——————————
o ———
W/\ | 0.50
w
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ﬁ/’\_/\/—\’“‘-‘m N
e —— o
s N\ S —

| 1.00
0.2 —

0.0 %_ 125
02

1
tB/d

Fig. 7. Horizontal crack opening displacements for the vertical sub-surface crack with force in the x-direction.
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Fig. 8. Dynamic stress intensity factors for the vertical surface-breaking crack with force in the x-direction.
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Fig. 9. Dynamic stress intensity factors (K;) for the vertical sub-surface crack with force in the x-direction.
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Fig. 10. Dynamic stress intensity factors (Kj;) for the vertical sub-surface crack with force in the x-direction.



4936 S.W. Liu, J.H. Huang | International Journal of Solids and Structures 40 (2003 ) 49254940

6.2. Force in the z-direction

Generally speaking, the patterns of the responses for the case of force in the z-direction are similar to
those for the case of force in the x-direction. Figs. 11 and 12 computed from analytical solutions show the
horizontal and vertical surface displacements on a medium without the crack, respectively. It is shown
again that among the initial waves Rayleigh waves have more contribution to the surface responses than
longitudinal and shear waves. Compared with Fig. 2, the longitudinal wave is not obvious in Fig. 11.

The vertical surface displacements of a medium containing a surface-breaking crack are shown in
Fig. 13. The initial Rayleigh waves are reflected as Rayleigh waves. Later, the diffracted waves from the
crack-tip appear at the free surface. Fig. 14 shows the vertical surface displacements for the case with a sub-
surface crack. In this case, reflected waves, transmitted waves, and diffracted waves from both crack-tips are
observed at the free surface. Diffracted waves induced by the upper crack-tip and transmitted waves
are mixed together in the region x > 0. Note that the accuracy of the developed method used in this paper
are ensured again by comparing the analytical results shown in Fig. 12 with the numerical results before the
initial waves arrive at the cracks as shown in Figs. 13 and 14.

|
|

nmmll

Fig. 11. Horizontal displacements at the free surface of a homogeneous medium subjected to a force in the z-direction.

-2
=Ne——
?3; _
Uz =2 =0 x/d
= = 1
R —
ol —— — = 1"
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Fig. 12. Vertical displacements at the free surface of a homogeneous medium subjected to a force in the z-direction.
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Fig. 13. Vertical displacements at the free surface of a medium containing a vertical surface-breaking crack with force in the z-direction.

03 : . - ; ; | .

1
tB/d

Fig. 14. Vertical displacements at the free surface of a medium containing a vertical sub-surface crack with force in the z-direction.
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Fig. 15. Vertical crack opening displacements for the vertical surface-breaking crack with force in the z-direction.
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— 1.00
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Fig. 16. Vertical crack opening displacements for the vertical sub-surface crack with force in the z-direction.
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Fig. 17. Dynamic stress intensity factors for the vertical surface-breaking crack with force in the z-direction.
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Fig. 18. Dynamic stress intensity factors (K;) for the vertical sub-surface crack with force in the z-direction.
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Fig. 19. Dynamic stress intensity factors (Kj;) for the vertical sub-surface crack with force in the z-direction.

The vertical crack opening displacements for the surface-breaking and sub-surface cracks are shown in
Figs. 15 and 16, respectively. Large crack opening displacements are observed at the crack mouth as shown
in Fig. 15. Dynamic stress intensity factors for the surface-breaking crack are shown in Fig. 17 and those
for the sub-surface crack are shown in Figs. 18 and 19. It is observed again in Fig. 18 that the stress in-
tensity factor (Kj) at the lower tip of the sub-surface crack has much larger amplitude than the upper tip.
This could be the contribution from the body waves.

7. Conclusions

A hybrid method combining the finite element method with boundary integral equation is applied to
investigate the dynamic responses of a cracked elastic solid subjected to in-plane surface loadings. The
numerical results for surface displacements, crack opening displacements, and dynamic stress intensity
factors are presented. The initial waves generated by the loading pulse include longitudinal, shear, and
Rayleigh waves. Among the initial waves Rayleigh surface waves dominate the elastodynamic field near
the free surface because most of the energy of Rayleigh waves is restricted to the free surface while the
energy of body waves are spread into the entire domain. The patterns of the surface responses caused by
a surface-breaking crack are quite distinct from those caused by a sub-surface crack. The distinctions
can be used to classify the types of cracks. The amplitudes and arrival times of the diffracted waves from
the crack-tips are strongly related to the location and size of the crack. The lower tip of the sub-surface
crack could have larger value of K; in the time histories than the upper tip. This phenomenon does not
occur in the case of the Rayleigh wave incidence alone. This contribution is mainly from the body
waves.
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